CHEATHAM COUNTY # 2012 International Residential Code Compliance for Single Family Dwellings # **INSPECTIONS** # **R109.1.1 Foundation inspection.** Inspection of the foundation shall be made after poles or piers are set or trenches or *basement* areas are excavated and any required forms erected and any required reinforcing steel is in place and supported prior to the placing of concrete. The foundation inspection shall include excavations for thickened slabs intended for the support of bearing walls, partitions, structural supports, or *equipment* and special requirements for wood foundations. ### R109.1.2 Plumbing, mechanical, gas and electrical systems inspection. Rough inspection of plumbing, mechanical, gas and electrical systems shall be made prior to covering or concealment, before fixtures or *appliances* are set or installed, and prior to framing inspection. **Exception:** Backfilling of ground-source heat pump loop systems tested in accordance with <u>Section M2105.1</u> prior to inspection shall be permitted. # **R109.1.3 Floodplain inspections.** For construction in flood hazard areas as established by Table R301.2(1), upon placement of the lowest floor, including *basement*, and prior to further vertical construction, the *building official* shall require submission of documentation, prepared and sealed by a registered *design professional*, of the elevation of the lowest floor, including *basement*, required in Section R322. # R109.1.4 Frame and masonry inspection. Inspection of framing and masonry construction shall be made after the roof, masonry, all framing, firestopping, draftstopping and bracing are in place and after the plumbing, mechanical and electrical rough inspections are *approved*. # R109.1.5 Other inspections. / INSULATION In addition to the called inspections above, the *building official* may make or require any other inspections to ascertain compliance with this code and other laws enforced by the *building official*. #### R109.1.5.1 Fire-resistance-rated construction inspection. Where fire-resistance-rated construction is required between *dwelling units* or due to location on property, the *building official* shall require an inspection of such construction after all lathing and/or wallboard is in place, but before any plaster is applied, or before wallboard joints and fasteners are taped and finished. #### **R109.1.6 Final inspection.** Final inspection shall be made after the permitted work is complete and prior to occupancy. #### R109.1.6.1 Elevation documentation. If located in a flood hazard area, the documentation of elevations required in <u>Section R322.1.10</u> shall be submitted to the *building official* prior to the final inspection. # **ENERGY** **303.1.1.1 Blown or sprayed roof/ceiling insulation.** The thickness of blown-in or sprayed roof/ceiling insulation (fiberglass or cellulose) shall be written in inches (mm) on markers that are installed at least one for every 300 square feet (28 m²) throughout the attic space. The markers shall be affixed to the trusses or joists and marked with the minimum initial installed thickness with numbers a minimum of 1 inch (25 mm) in height. Each marker shall face the attic access opening. Spray polyurethane foam thickness and installed *R*-value shall be *listed* on certification provided by the insulation installer. **303.1.2 Insulation mark installation.** Insulating materials shall be installed such that the manufacturer's *R*-value mark is readily observable upon inspection. **401.3 Certificate.** A permanent certificate shall be posted on or in the electrical distribution panel. The certificate shall not cover or obstruct the visibility of the circuit directory label, service disconnect label or other required labels. The certificate shall be completed by the builder or registered design professional. The certificate shall list the predominant *R*-values of insulation installed in or on ceiling/roof, walls, foundation (slab, *basement wall*, crawlspace wall and/or floor) and ducts outside conditioned spaces; *U*-factors for fenestration and the solar heat gain coefficient (SHGC) of fenestration. Where there is more than one value for each component, the certificate shall list the value covering the largest area. The certificate shall list the types and efficiencies of heating, cooling and service water heating equipment. Where a gas-fired unvented room heater, electric furnace, or baseboard electric heater is installed in the residence, the certificate shall list "gas-fired unvented room heater," "electric furnace" or "baseboard electric heater," as appropriate. An efficiency shall not be *listed* for gas-fired unvented room heaters, electric furnaces or electric baseboard heaters. TABLE 402.1.1 INSULATION AND FENESTRATION REQUIREMENTS BY COMPONENT^a | Climate | Fenstration | Skylight | Glazed Fen. | Ceiling | Wood Frame | |---------|-------------|----------|-------------|---------|--------------| | Zone | U-Factor | U-Factor | SHGC | R-Value | Wall R-Value | | 4 | 0.35 | 0.6 | NR | 38 | | | Mass Wall | Floor | Basement Wall R-Value | Slab | Crawl Space Wall | |-----------|---------|-----------------------|-----------------|------------------| | R-Value | R-Value | | R-Value & Depth | R-Value | | 5/10 | 19 | 10/13 | 10,2 ft | 10/13 | **402.2.1 Ceilings with attic spaces.** When Section 402.1.1 would require R-38 in the ceiling, R-30 shall be deemed to satisfy the requirement for R-38 wherever the full height of uncompressed R-30 insulation extends over the wall top plate at the eaves. Similarly, R-38 shall be deemed to satisfy the requirement for R-49 wherever the full height of uncompressed R-38 insulation extends over the wall top plate at the eaves. This reduction shall not apply to the *U*-factor alternative approach in Section 402.1.3 and the total UA alternative in Section 402.1.4. **402.2.3 Access hatches and doors.** Access doors from conditioned spaces to unconditioned spaces (e.g., attics and crawl spaces) shall be weatherstripped and insulated to a level equivalent to the insulation on the surrounding surfaces. Access shall be provided to all equipment that prevents damaging or compressing the insulation. A wood framed or equivalent baffle or retainer is required to be provided when loose fill insulation is installed, the purpose of which is to prevent the loose fill insulation from spilling into the living space when the attic access is opened, and to provide a permanent means of maintaining the installed *R*-value of the loose fill insulation. **402.4.2.2 Visual inspection option.** Building envelope tightness and insulation installation shall be considered acceptable when the items listed in Table 402.4.2, applicable to the method of construction, are field verified. Where required by the *code official*, an *approved* party independent from the installer of the insulation shall inspect the air barrier and insulation. # **GENERAL CONSTRUCTION** # R310.1 Emergency escape and rescue required. Basements, habitable attics and every sleeping room shall have at least one operable emergency escape and rescue opening. Where basements contain one or more sleeping rooms, emergency egress and rescue openings shall be required in each sleeping room. Where emergency escape and rescue openings are provided they shall have a sill height of not more than 44 inches (1118 mm) measured from the finished floor to the bottom of the clear opening. Where a door opening having a threshold below the adjacent ground elevation serves as an emergency escape and rescue opening and is provided with a bulkhead enclosure, the bulkhead enclosure shall comply with Section R310.3. The net clear opening dimensions required by this section shall be obtained by the normal operation of the emergency escape and rescue opening from the inside. Emergency escape and rescue openings with a finished sill height below the adjacent ground elevation shall be provided with a window well in accordance with Section R310.2. Emergency escape and rescue openings shall open directly into a public way, or to a yard or court that opens to a public way. **Exception:** *Basements* used only to house mechanical *equipment* and not exceeding total floor area of 200 square feet (18.58 m²). # R310.1.1 Minimum opening area. All emergency escape and rescue openings shall have a minimum net clear opening of 5.7 square feet (0.530 m²). Exception: *Grade* floor openings shall have a minimum net clear opening of 5 square feet (0.465 m²). # R310.1.2 Minimum opening height. The minimum net clear opening height shall be 24 inches (610 mm). # R310.1.3 Minimum opening width. The minimum net clear opening width shall be 20 inches (508 mm). # **R310.1.4** Operational constraints. Emergency escape and rescue openings shall be operational from the inside of the room without the use of keys, tools or special knowledge. # **R311.7.6** Landings for stairways. There shall be a floor or landing at the top and bottom of each stairway. The minimum width perpendicular to the direction of travel shall be no less than the width of the flight served. Landings of shapes other than square or rectangular shall be permitted provided the depth at the walk line and the total area is not less than that of a quarter circle with a radius equal to the required landing width. Where the stairway has a straight run, the minimum depth in the direction of travel shall be not less than 36 inches (914 mm). #### R311.7.8 Handrails. Handrails shall be provided on at least one side of each continuous run of treads or flight with four or more risers. # R311.7.8.1 Height. Handrail height, measured vertically from the sloped plane adjoining the tread nosing, or finish surface of ramp slope, shall be not less than 34 inches (864 mm) and not more than 38 inches (965 mm). # R311.7.8.3 Grip-size. All required handrails shall be of one of the following types or provide equivalent graspability. - 1. Type I. Handrails with a circular cross section shall have an outside diameter of at least $1^{1}/_{4}$ inches (32 mm) and not greater than 2 inches (51 mm). If the handrail is not circular, it shall have a perimeter dimension of at least 4 inches (102 mm) and not greater than $6^{1}/_{4}$ inches (160 mm) with a maximum cross section of dimension of $2^{1}/_{4}$ inches (57 mm). Edges shall have a minimum radius of 0.01 inch (0.25 mm). - 2. Type II. Handrails with a perimeter greater than $6^{1}/_{4}$ inches (160 mm) shall have a graspable finger recess area on both sides of the profile. The finger recess shall begin within a distance of ${}^{3}/_{4}$ inch (19 mm) measured vertically from the tallest portion of the profile and achieve a depth of at least ${}^{5}/_{16}$ inch (8 mm) within ${}^{7}/_{8}$ inch (22 mm) below the widest portion of the profile. This required depth shall continue for at least ${}^{3}/_{8}$ inch (10 mm) to a level that is not less than ${}^{13}/_{4}$ inches (45 mm) below the tallest portion of the profile. The minimum width of the handrail above the recess shall be ${}^{11}/_{4}$ inches (32 mm) to a maximum of ${}^{23}/_{4}$ inches (70 mm). Edges shall have a minimum radius of 0.01 inch (0.25 mm). #### **R312.1 Guards.** Guards shall be provided in accordance with Sections R312.1.1 through R312.1.4. # R312.1.1 Where required. *Guards* shall be located along open-sided walking surfaces, including stairs, ramps and landings, that are located more than 30 inches (762 mm) measured vertically to the floor or *grade* below at any point within 36 inches (914 mm) horizontally to the edge of the open side. Insect screening shall not be considered as a *guard*. #### **R312.1.2** Height. Required *guards* at open-sided walking surfaces, including stairs, porches, balconies or landings, shall be not less than 36 inches (914 mm) high measured vertically above the adjacent walking surface, adjacent fixed seating or the line connecting the leading edges of the treads. # **Exceptions:** - 1. *Guards* on the open sides of stairs shall have a height not less than 34 inches (864 mm) measured vertically from a line connecting the leading edges of the treads. - 2. Where the top of the guard also serves as a handrail on the open sides of stairs, the top of the guard shall not be less than 34 inches (864 mm) and not more than 38 inches (965 mm) measured vertically from a line connecting the leading edges of the treads. # **R312.1.3** Opening limitations. Required *guards* shall not have openings from the walking surface to the required *guard* height which allow passage of a sphere 4 inches (102 mm) in diameter. # **Exceptions:** - 1. The triangular openings at the open side of stair, formed by the riser, tread and bottom rail of a guard, shall not allow passage of a sphere 6 inches (153 mm) in diameter. - 2. Guards on the open side of stairs shall not have openings which allow passage of a sphere $4^3/8$ inches (111 mm) in diameter. # R312.1.4 Exterior woodplastic composite guards. Woodplastic composite *guards* shall comply with the provisions of <u>Section R317.4.</u> #### R314.3 Location. Smoke alarms shall be installed in the following locations: - 1. In each sleeping room. - 2. Outside each separate sleeping area in the immediate vicinity of the bedrooms. - 3. On each additional *story* of the *dwelling*, including *basements* and habitable attics but not including crawl spaces and uninhabitable *attics*. In *dwellings* or *dwelling units* with split levels and without an intervening door between the adjacent levels, a smoke alarm installed on the upper level shall suffice for the adjacent lower level provided that the lower level is less than one full *story* below the upper level. # R314.3.1 Alterations, repairs and additions. When *alterations*, repairs or *additions* requiring a *permit* occur, or when one or more sleeping rooms are added or created in existing *dwellings*, the individual *dwelling unit* shall be equipped with smoke alarms located as required for new *dwellings*. #### **R314.5 Interconnection.** Where more than one smoke alarm is required to be installed within an individual dwelling unit in accordance with <u>Section R314.3</u>, the alarm devices shall be interconnected in such a manner that the actuation of one alarm will activate all of the alarms in the individual unit. Physical interconnection of smoke alarms shall not be required where listed wireless alarms are installed and all alarms sound upon activation of one alarm. # **SECTION R323 STORM SHELTERS** #### R323.1 General. This section applies to the construction of storm shelters when constructed as separate detached buildings or when constructed as safe rooms within buildings for the purpose of providing safe refuge from storms that produce high winds, such as tornados and hurricanes. In addition to other applicable requirements in this code, storm shelters shall be constructed in accordance with ICC/NSSA-500. #### R403.1 General. All exterior walls shall be supported on continuous solid or fully grouted masonry or concrete footings, crushed stone footings, wood foundations, or other *approved* structural systems which shall be of sufficient design to accommodate all loads according to <u>Section R301</u> and to transmit the resulting loads to the soil within the limitations as determined from the character of the soil. Footings shall be supported on undisturbed natural soils or engineered fill. Concrete footing shall be designed and constructed in accordance with the provisions of <u>Section R403</u> or in accordance with ACI 332. TABLE R403.1 MINIMUM WIDTH OF CONCRETE, PRECAST OR MASONRY FOOTINGS (inches)^a | | LOAD-BEARING VALUE OF SOIL (psf) | | | | | | | | |------------------------------------------------|----------------------------------|----------|-----------|---------|--|--|--|--| | | 1,500 | 2,000 | 3,000 | ≥ 4,000 | | | | | | Conventional light-frame construction | | | | | | | | | | 1-story | 12 | 12 | 12 | 12 | | | | | | 2-story | 15 | 12 | 12 | 12 | | | | | | 3-story | 23 | 17 | 12 | 12 | | | | | | 4-inch brick veneer over light frame or 8-inch | | | | | | | | | | | holl | ow conci | rete maso | onry | | | | | | 1-story | 12 | 12 | 12 | 12 | | | | | | 2-story | 21 | 16 | 12 | 12 | | | | | | 3-story | 32 | 24 | 16 | 12 | | | | | | 8-inch solid or fully grouted masonry | | | | | | | | | | 1-story | 16 | 12 | 12 | 12 | | | | | | 2-story | 29 | 21 | 14 | 12 | | | | | | 3-story | 42 | 32 | 21 | 16 | | | | | For SI: 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kPa. a. Where minimum footing width is 12 inches, use of a single wythe of solid or fully grouted 12-inch nominal concrete masonry units is permitted. #### **R404.1.1** Design of masonry foundation walls. Masonry foundation walls shall be designed and constructed in accordance with the provisions of this section or in accordance with the provisions of TMS 402/ACI 530/ASCE 5 or NCMA TR68-A. When TMS 402/ACI 530/ASCE 5, NCMA TR68-A or the provisions of this section are used to design masonry foundation walls, project drawings, typical details and specifications are not required to bear the seal of the architect or engineer responsible for design, unless otherwise required by the state law of the *jurisdiction* having authority. #### **SECTION R405 FOUNDATION DRAINAGE** #### **R405.1** Concrete or masonry foundations. Drains shall be provided around all concrete or masonry foundations that retain earth and enclose habitable or usable spaces located below *grade*. Drainage tiles, gravel or crushed stone drains, perforated pipe or other *approved* systems or materials shall be installed at or below the area to be protected and shall discharge by gravity or mechanical means into an *approved* drainage system. Gravel or crushed stone drains shall extend at least 1 foot (305 mm) beyond the outside edge of the footing and 6 inches (152 mm) above the top of the footing and be covered with an *approved* filter membrane material. The top of open joints of drain tiles shall be protected with strips of building paper. Perforated drains shall be surrounded with an *approved* filter membrane or the filter membrane shall cover the washed gravel or crushed rock covering the drain. Drainage tiles or perforated pipe shall be placed on a minimum of 2 inches (51 mm) of washed gravel or crushed rock at least one sieve size larger than the tile joint opening or perforation and covered with not less than 6 inches (152 mm) of the same material. # **R408.2** Openings for under-floor ventilation. The minimum net area of ventilation openings shall not be less than 1 square foot (0.0929 m^2) for each 150 square feet (14 m^2) of under-floor area. One ventilation opening shall be within 3 feet (915 mm) of each corner of the building. Ventilation openings shall be covered for their height and width with any of the following materials provided that the least dimension of the covering shall not exceed $^1/_4$ inch (6.4 mm): - 1. Perforated sheet metal plates not less than 0.070 inch (1.8 mm) thick. - 2. Expanded sheet metal plates not less than 0.047 inch (1.2 mm) thick. - 3. Cast-iron grill or grating. - 4. Extruded load-bearing brick vents. - 5. Hardware cloth of 0.035 inch (0.89 mm) wire or heavier. - 6. Corrosion-resistant wire mesh, with the least dimension being $\frac{1}{8}$ inch (3.2 mm) thick. **Exception:** The total area of ventilation openings shall be permitted to be reduced to $^{1}/_{1,500}$ of the underfloor area where the ground surface is covered with an *approved* Class I vapor retarder material and the required openings are placed to provide cross ventilation of the space. The installation of operable louvers shall not be prohibited. # **R501.3** Fire protection of floors. Floor assemblies, not required elsewhere in this code to be fire-resistance rated, shall be provided with a $^{1}/_{2}$ -inch (12.7 mm) gypsum wallboard membrane, $^{5}/_{8}$ -inch (16 mm) wood structural panel membrane, or equivalent on the underside of the floor framing member. # **Exceptions:** - 1. Floor assemblies located directly over a space protected by an automatic sprinkler system in accordance with Section P2904, NFPA13D, or other approved equivalent sprinkler system. - 2. Floor assemblies located directly over a crawl space not intended for storage or fuel-fired appliances. - 3. Portions of floor assemblies can be unprotected when complying with the following: - 3.1. The aggregate area of the unprotected portions shall not exceed 80 square feet per story - 3.2. Fire blocking in accordance with <u>Section R302.11.1</u> shall be installed along the perimeter of the unprotected portion to separate the unprotected portion from the remainder of the floor assembly. - 4. Wood floor assemblies using dimension lumber or structural composite lumber equal to or greater than 2-inch by 10-inch (50.8 mm by 254 mm) nominal dimension, or other approved floor assemblies demonstrating equivalent fire performance. #### **SECTION R507 DECKS** #### **R507.1 Decks.** Where supported by attachment to an exterior wall, decks shall be positively anchored to the primary structure and designed for both vertical and lateral loads. Such attachment shall not be accomplished by the use of toenails or nails subject to withdrawal. Where positive connection to the primary building structure cannot be verified during inspection, decks shall be self-supporting. For decks with cantilevered framing members, connections to exterior walls or other framing members, shall be designed and constructed to resist uplift resulting from the full live load specified in Table R301.5 acting on the cantilevered portion of the deck. # R507.2 Deck ledger connection to band joist. For decks supporting a total design load of 50 pounds per square foot (2394 Pa) [40 pounds per square foot (1915 Pa) live load plus 10 pounds per square foot (479 Pa) dead load], the connection between a deck ledger of pressure-preservative-treated Southern Pine, incised pressure-preservative-treated Hem-Fir or *approved* decayresistant species, and a 2-inch (51 mm) nominal lumber band joist bearing on a sill plate or wall plate shall be constructed with $^{1}/_{2}$ -inch (12.7 mm) lag screws or bolts with washers in accordance with Table R507.2. Lag screws, bolts and washers shall be hot-dipped galvanized or stainless steel. # TABLE R507.2 FASTENER SPACING FOR A SOUTHERN PINE OR HEM-FIR DECK LEDGER AND A 2-INCH-NOMINAL SOLID-SAWN SPRUCE-PINE-FIR BAND JOIST $^{c, f, g}$ (Deck live load = 40 psf, deck dead load = 10 psf) | JOIST SPAN | 6' and less | 6' 1"
to 8' | 8' 1"
to 10' | 10' 1"
to 12' | 12' 1"
to 14' | | 16' 1"
to 18' | | |---|-------------|--|-----------------|------------------|------------------|----|------------------|--| | Connection details | | On-center spacing of fasteners ^{d, e} | | | | | | | | ¹ / ₂ inch diameter lag screw with ¹⁵ / ₃₂ inch maximum sheathing ^a | 30 | 23 | 18 | 15 | 13 | 11 | 10 | | | ¹ / ₂ inch diameter bolt with ¹⁵ / ₃₂ inch maximum sheathing | 36 | 36 | 34 | 29 | 24 | 21 | 19 | | | ¹ / ₂ inch diameter bolt with ¹⁵ / ₃₂ inch maximum sheathing and ¹ / ₂ inch stacked washers ^{b, h} | 36 | 36 | 29 | 24 | 21 | 18 | 16 | | For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm. 1 pound per square foot = 0.0479 kPa. - a. The tip of the lag screw shall fully extend beyond the inside face of the band joist. - b. The maximum gap between the face of the ledger board and face of the wall sheathing shall be $\frac{1}{2}$ inch. - c. Ledgers shall be flashed to prevent water from contacting the house band joist. - d. Lag screws and bolts shall be staggered in accordance with Section R507.2.1. - e. Deck ledger shall be minimum 2×8 pressure-preservative-treated No. 2 grade lumber, or other approved materials as established by standard engineering practice. - f. When solid-sawn pressure-preservative-treated deck ledgers are attached to a minimum 1-inch-thick engineered wood product (structural composite lumber, laminated veneer lumber or wood structural panel band joist), the ledger attachment shall be designed in accordance with accepted engineering practice. - g. A minimum $1 \times 9^1/_2$ Douglas Fir laminated veneer lumber rimboard shall be permitted in lieu of the 2-inch nominal band joist. - h. Wood structural panel sheathing, gypsum board sheathing or foam sheathing not exceeding 1 inch in thickness shall be permitted. The maximum distance between the face of the ledger board and the face of the band joist shall be 1 inch. # R507.2.1 Placement of lag screws or bolts in deck ledgers and band joists. The lag screws or bolts in deck ledgers and band joists shall be placed in accordance with Table R507.2.1 and Figures R507.2.1(1) and R507.2.1(2). TABLE 507.2.1 PLACEMENT OF LAG SCREWS AND BOLTS IN DECK LEDGERS AND BAND JOISTS | MINIMUM END AND EDGE DISTANCES AND SPACING BETWEEN ROWS | | | | | | | | |---|----------------------------------|----------------------------------|-----------------------|---|--|--|--| | | TOP EDGE | BOTTOM EDGE | ENDS | ROW SPACING | | | | | Ledger ^a | 2 inches ^d | ¹ / ₄ inch | 2 inches ^b | 1 ⁵ / ₈ inches ^b | | | | | Band Joist ^c | ³ / ₄ inch | 2 inches | 2 inches ^b | 1 ⁵ / ₈ inches ^b | | | | For SI: 1 inch = 25.4 mm. - a. Lag screws or bolts shall be staggered from the top to the bottom along the horizontal run of the deck ledger in accordance with Figure R507.2.1(1). - b. Maximum 5 inches. - c. For engineered rim joists, the manufacturer's recommendations shall govern. - d. The minimum distance from bottom row of lag screws or bolts to the top edge of the ledger shall be in accordance with Figure R507.2.1(1). For SI: 1 inch = 25.4 mm. # FIGURE R507.2.1(1) PLACEMENT OF LAG SCREWS AND BOLTS IN LEDGERS For SI: 1 inch = 25.4 mm. # FIGURE R507.2.1(2) PLACEMENT OF LAG SCREWS AND BOLTS IN BAND JOISTS # R507.2.2 Alternate deck ledger connections. Deck ledger connections not conforming to Table R507.2 shall be designed in accordance with accepted engineering practice. Girders supporting deck joists shall not be supported on deck ledgers or band joists. Deck ledgers shall not be supported on stone or masonry veneer. #### **R507.2.3** Deck lateral load connection. The lateral load connection required by <u>Section R507.1</u> shall be permitted to be in accordance with Figure R507.2.3. Where the lateral load connection is provided in accordance with Figure R507.2.3, hold-down tension devices shall be installed in not less than two locations per deck, and each device shall have an allowable stress design capacity of not less than 1500 pounds (6672 N). For SI: 1 inch = 25.4 mm. #### FIGURE 507.2.3 DECK ATTACHMENT FOR LATERAL LOADS # R507.3 Wood/plastic composites. Wood/plastic composites used in exterior deck boards, stair treads, handrails and guardrail systems shall bear a label indicating the required performance levels and demonstrating compliance with the provisions of ASTM D 7032. # R507.3.1 Installation of wood/plastic composites. Wood/plastic composites shall be installed in accordance with the manufacturer's instructions. #### **R602.6** Drilling and notching of studs. Drilling and notching of studs shall be in accordance with the following: - 1. Notching. Any stud in an exterior wall or bearing partition may be cut or notched to a depth not exceeding 25 percent of its width. Studs in nonbearing partitions may be notched to a depth not to exceed 40 percent of a single stud width. - 2. Drilling. Any stud may be bored or drilled, provided that the diameter of the resulting hole is no more than 60 percent of the stud width, the edge of the hole is no more than $\frac{5}{8}$ inch (16 mm) to the edge of the stud, and the hole is not located in the same section as a cut or notch. Studs located in exterior walls or bearing partitions drilled over 40 percent and up to 60 percent shall also be doubled with no more than two successive doubled studs bored. See Figures R602.6(1) and R602.6(2). **Exception:** Use of *approved* stud shoes is permitted when they are installed in accordance with the manufacturer's recommendations. # R602.10.1.1 Length of a braced wall line. The length of a *braced wall line* shall be the distance between its ends. The end of a *braced wall line* shall be the intersection with a perpendicular *braced wall line*, an angled *braced wall line* as permitted in <u>Section</u> R602.10.1.4 or an exterior wall as shown in Figure R602.10.1.1. For SI: 1 foot = 304.8 mm. #### FIGURE R602.10.1.1 BRACED WALL LINES #### **R802.3** Framing details. Rafters shall be framed to ridge board or to each other with a gusset plate as a tie. Ridge board shall be at least 1-inch (25 mm) nominal thickness and not less in depth than the cut end of the rafter. At all valleys and hips there shall be a valley or hip rafter not less than 2-inch (51 mm) nominal thickness and not less in depth than the cut end of the rafter. Hip and valley rafters shall be supported at the ridge by a brace to a bearing partition or be designed to carry and distribute the specific load at that point. Where the roof pitch is less than three units vertical in 12 units horizontal (25-percent slope), structural members that support rafters and ceiling joists, such as ridge beams, hips and valleys, shall be designed as beams. Where ceiling joists are not connected to the rafters at the top wall plate, joists connected higher in the *attic* shall be installed as rafter ties, or rafter ties shall be installed to provide a continuous tie. Where ceiling joists are not parallel to rafters, rafter ties shall be installed. Rafter ties shall be a minimum of 2 inches by 4 inches (51 mm by 102 mm) (nominal), installed in accordance with the connection requirements in Table R802.5.1(9), or connections of equivalent capacities shall be provided. Where ceiling joists or rafter ties are not provided, the ridge formed by these rafters shall be supported by a wall or girder designed in accordance with accepted engineering practice. Collar ties or ridge straps to resist wind uplift shall be connected in the upper third of the *attic* space in accordance with Table R602.3(1). Collar ties shall be a minimum of 1 inch by 4 inches (25 mm by 102 mm) (nominal), spaced not more than 4 feet (1219 mm) on center. #### where: H_C = Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls. H_R = Height of roof ridge measured vertically above the top of the rafter support walls. **R802.7.1.1** Cantilevered portions of rafters. Notches on cantilevered portions of rafters are permitted provided the dimension of the remaining portion of the rafter is not less than $3^{1}/_{2}$ inches (89 mm) and the length of the cantilever does not exceed 24 inches (610 mm) in accordance with Figure R802.7.1.1. # FIGURE R802.7.1.1 RAFTER NOTCH R802.7.1.2 Ceiling joist taper cut. Taper cuts at the ends of the ceiling joist shall not exceed one-fourth the depth of the member in accordance with Figure R802.7.1.2. # FIGURE R802.7.1.2 CEILING JOIST TAPER CUT R802.9 Framing of openings. Openings in roof and ceiling framing shall be framed with header and trimmer joists. When the header joist span does not exceed 4 feet (1219 mm), the header joist may be a single member the same size as the ceiling joist or rafter. Single trimmer joists may be used to carry a single header joist that is located within 3 feet (914 mm) of the trimmer joist bearing. When the header joist span exceeds 4 feet (1219 mm), the trimmer joists and the header joist shall be doubled and of sufficient cross section to support the ceiling joists or rafter framing into the header. *Approved* hangers shall be used for the header joist to trimmer joist connections when the header joist span exceeds 6 feet (1829 mm). Tail joists over 12 feet (3658 mm) long shall be supported at the header by framing anchors or on ledger strips not less than 2 inches by 2 inches (51 mm by 51 mm). #### R807.1 Attic access. Buildings with combustible ceiling or roof construction shall have an *attic* access opening to *attic* areas that exceed 30 square feet (2.8 m²) and have a vertical height of 30 inches (762 mm) or greater. The vertical height shall be measured from the top of the ceiling framing members to the underside of the roof framing members. The rough-framed opening shall not be less than 22 inches by 30 inches (559 mm by 762 mm) and shall be located in a hallway or other readily accessible location. When located in a wall, the opening shall be a minimum of 22 inches wide by 30 inches high (559 mm wide by 762 mm high). When the access is located in a ceiling, minimum unobstructed headroom in the *attic* space shall be 30 inches (762 mm) at some point above the access measured vertically from the bottom of ceiling framing members. See Section M1305.1.3 for access requirements where mechanical *equipment* is located in *attics*. # M1411.6 Locking access port caps. Refrigerant circuit access ports located outdoors shall be fitted with locking-type tamper-resistant caps or shall be otherwise secured to prevent unauthorized access. # M1501.1 Outdoor discharge. The air removed by every mechanical exhaust system shall be discharged to the outdoors in accordance with <u>Section M1506.2</u>. Air shall not be exhausted into an attic, soffit, ridge vent or crawl space. #### M1506.2 Exhaust openings. Air exhaust openings shall terminate not less than 3 feet (914 mm) from property lines; 3 feet (914 mm) from operable and nonoperable openings into the building and 10 feet (3048 mm) from mechanical air intakes except where the opening is located 3 feet (914 mm) above the air intake. Openings shall comply with <u>Sections R303.5.2</u> and <u>R303.6</u>. # M1601.4.1 Joints, seams and connections. All longitudal and transverse joints, seams and connections in metallic and nonmetallic ducts shall be constructed as specified in SMACNA *HVAC Duct Construction Standards—Metal and Flexible* and NAIMA *Fibrous Glass Duct Construction Standards*. All joints, longitudinal and transverse seams, and connections in ductwork shall be securely fastened and sealed with welds, gaskets, mastics (adhesives), mastic-plus-embedded-fabric systems or tapes. Closure systems used to seal flexible air ducts and flexible air connectors shall comply with UL 181B and shall be marked "181 B-FX" for pressure-sensitive tape or "181 B-M" for mastic. Duct connections to flanges of air distribution system equipment shall be sealed and mechanically fastened. Mechanical fasteners for use with flexible nonmetallic air ducts shall comply with UL 181B and shall be marked 181B-C. Crimp joints for round metallic ducts shall have a contact lap of not less than 1 inch (25.4 mm) and shall be mechanically fastened by means of not less than three sheet-metal screws or rivets equally spaced around the joint. Closure systems used to seal metal ductwork shall be installed in accordance with the manufacturer's instructions. Round metallic ducts shall be mechanically fastened by means of at least three sheet metal screws or rivets spaced equally around the joint. Unlisted duct tape shall not be permitted as a sealant on any duct. # **Exceptions:** - 1. Spray polyurethane foam shall be permitted to be applied without additional joint seals. - 2. Where a duct connection is made that is partially inaccessible, three screws or rivets shall be equally spaced on the exposed portion of the joint so as to prevent a hinge effect. - 3. Continuously welded and locking-type longitudinal joints and seams in ducts operating at static pressures less than 2 inches of water column (500 Pa) pressure classification shall not require additional closure systems. # R905.2.8.5 Drip edge. A drip edge shall be provided at eaves and gables of shingle roofs. Adjacent pieces of drip edge shall be overlapped a minimum of 2 inches (51 mm). Drip edges shall extend a minimum of 0.25 inch (6.4 mm) below the roof sheathing and extend up the roof deck a minimum of 2 inches (51 mm). Drip edges shall be mechanically fastened to the roof deck at a maximum of 12 inches (305 mm) o.c. with fasteners as specified in Section R905.2.5. Underlayment shall be installed over the drip edge along eaves and under the underlayment on gables. Unless specified differently by the shingle manufacturer, shingles are permitted to be flush with the drip edge. # P2503.4 Building sewer testing. The *building sewer* shall be tested by insertion of a test plug at the point of connection with the public sewer and filling the *building sewer* with water, testing with not less than a 10-foot (3048 mm) head of water and be able to maintain such pressure for 15 minutes. # P2503.6 Shower liner test. Where shower floors and receptors are made water tight by the application of materials required by <u>Section P2709.2</u>, the completed liner installation shall be tested. The pipe from the shower drain shall be plugged water tight for the test. The floor and receptor area shall be filled with potable water to a depth of not less than 2 inches (51 mm) measured at the threshold. Where a threshold of at least 2 inches high does not exist, a temporary threshold shall be constructed to retain the test water in the lined floor or receptor area to a level not less than 2 inches deep measured at the threshold. The water shall be retained for a test period of not less than 15 minutes and there shall be no evidence of leakage. #### P2503.7 Water-supply system testing. Upon completion of the water-supply system or a section of it, the system or portion completed shall be tested and proved tight under a water pressure of not less than the working pressure of the system or, for piping systems other than plastic, by an air test of not less than 50 psi (345 kPa). This pressure shall be held for not less than 15 minutes. The water used for tests shall be obtained from a potable water source. # P2801.5 Required pan. Where a storage tank-type water heater or a hot water storage tank is installed in a location where water leakage from the tank will cause damage, the tank shall be installed in a galvanized steel pan having a material thickness of not less than 0.0236 inch (0.6010 mm) (No. 24 gage), or other pans approved for such use. Listed pans shall comply with CSA LC3. #### P2801.5.1 Pan size and drain. The pan shall be not less than $1^{1}/_{2}$ inches (38 mm) deep and shall be of sufficient size and shape to receive all dripping or condensate from the tank or water heater. The pan shall be drained by an indirect waste pipe of not less than $\frac{3}{4}$ inch (19 mm) diameter. Piping for safety pan drains shall be of those materials listed in Table P2905.5. #### P2801.5.2 Pan drain termination. The pan drain shall extend full-size and terminate over a suitably located indirect waste receptor or shall extend to the exterior of the building and terminate not less than 6 inches (152 mm) and not more than 24 inches (610 mm) above the adjacent ground surface. ### P2801.6 Water heaters installed in garages. Water heaters having an *ignition source* shall be elevated such that the source of ignition is not less than 18 inches (457 mm) above the garage floor. (AN OPEN RESISTANCE HEATING COIL IS COSIDERED AN IGNITION SOURCE) **Exception:** Elevation of the ignition source is not required for appliances that are listed as flammable vapor ignition-resistant. # P2803.6.1 Requirements for discharge pipe. The discharge piping serving a pressure-relief valve, temperature-relief valve or combination valve shall: - 1. Not be directly connected to the drainage system. - 2. Discharge through an air gap located in the same room as the water heater. - 3. Not be smaller than the diameter of the outlet of the valve served and shall discharge full size to the air gap. - 4. Serve a single relief device and shall not connect to piping serving any other relief device or equipment. - 5. Discharge to the floor, to the pan serving the water heater or storage tank, to a waste receptor or to the outdoors. - 6. Discharge in a manner that does not cause personal injury or structural damage. - 7. Discharge to a termination point that is readily observable by the building occupants. - 8. Not be trapped. - 9. Be installed to flow by gravity. - 10. Not terminate more than 6 inches (152 mm) above the floor or waste receptor. - 11. Not have a threaded connection at the end of the piping. - 12. Not have valves or tee fittings. - 13. Be constructed of those materials listed in <u>Section P2905.5</u> or materials tested, rated and approved for such use in accordance with ASME A112.4.1. # P2903.4 Thermal expansion control. A means for controlling increased pressure caused by thermal expansion shall be installed where required in accordance with <u>Sections P2903.4.1</u> and <u>P2903.4.2</u>. #### P2903.4.1 Pressure-reducing valve. For water service system sizes up to and including 2 inches (51 mm), a device for controlling pressure shall be installed where, because of thermal expansion, the pressure on the downstream side of a pressure-reducing valve exceeds the pressure-reducing valve setting. # P2903.4.2 Backflow prevention device or check valve. Where a backflow prevention device, check valve or other device is installed on a water supply system using storage water heating equipment such that thermal expansion causes an increase in pressure, a device for controlling pressure shall be installed.